ON THE STABILITY OF MOTION IN
 A CERTAIN CRITICAL CASE
 (OB USTOICHIVOSTI DVIVARNIIA ∇ ODNOM KRITTCHESKCOM SLUOBAR)

PMM Vol.30, N 4 , 1966, pp.779-782
NGO VAN VYONG
(Hano1, Viet-Nam)
(Received October 30, 1965)

We shall consider the stability of motion described by a system of differential equations of perturbed motion of the form

$$
\begin{equation*}
x_{i}=y_{i}+X_{i}^{*}, \quad y_{i}=Y_{i}^{*}, \quad \zeta_{s}=\sum_{k=1}^{n} p_{s k} \zeta_{k}+Z_{s}^{*} \quad\binom{i=1, \ldots, m}{s=1, \ldots, n} \tag{0.1}
\end{equation*}
$$

Here $X_{i}{ }^{*}, Y_{i}{ }^{*}, \dot{Z}_{s}^{*}$ are holomorphic functions which contain no terms of lower than the second order in $x_{1}, \ldots, x_{2} ; \nu_{1}, \ldots, V_{1} ; b_{1}, \ldots, b_{n}$. All the roots of Equation $\left|p_{\mathrm{a}}-\delta_{\mathrm{a}} \bar{\lambda}\right|^{\prime \prime}=0$ have negative reaíparts different from zero.

Paper [1] contains a discussion of a system of the form (0.1) under the condition

$$
\begin{gather*}
Y_{i}^{*}=\sum_{k=1}^{m} a_{i k} y_{k}^{2}+\sum_{k=1}^{m} p_{i k}\left(\zeta_{1}, \ldots, \zeta_{n}\right) y_{k}+Q_{i}\left(\zeta_{1}, \ldots, \zeta_{n}\right)+\sum_{\sigma=1}^{n} \zeta_{\sigma} \varphi_{i \sigma}\left(x_{1}, \ldots, x_{m}\right)+ \tag{0.2}\\
+R_{i}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; \zeta_{1}, \ldots, \zeta_{n}\right) \\
Z_{s}^{*}=\sum_{\sigma=1}^{n} \zeta_{\sigma} \omega_{s \sigma}\left(x_{1}, \ldots, x_{m}\right)+R_{s}^{\prime}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; \zeta_{1}, \ldots, \zeta_{n}\right)
\end{gather*}
$$

where $a_{i n}$ are constants; " $\varphi_{i \sigma}, \omega_{s o}$ are holomorphic functions which vanish for $x_{1}=\ldots=x_{m}=0 ; P_{i k}$ are linear and Q_{1} are quadratic forms in ζ_{1}, \ldots $\ldots, \zeta_{n} ; R_{1}, R_{n}$ are holomorphic functions in $x_{1}, \ldots, x_{n} ; y_{n}, \ldots, y_{n} ;$ $\zeta_{1}, \ldots . G_{n}$ which contain no terms of lower than the third order in these variables. In paper [1] an attempt is made to prove the instability of unperturbed motion with values of $Y_{1}{ }^{*}, Z_{3}{ }^{*}$ which satisfy condition (0.2).

Despite the highly specific form of the functions $Y_{i}{ }^{*}, Z_{s}{ }^{*}$ considered in [1], the function V proposed by its authors is not a chetaev function unless additional conditions are imposed on Y_{i}^{*} and Z_{i}^{*}. In fact, the expression for S ([1], (2.8)) contains, for example, the sums

$$
\sum_{k=1}^{m}\left[1+\left(1-\sum_{k=1}^{m} a_{i \hbar}\right) x_{k}\right] R_{i}, \quad \sum_{k=1}^{m} \sum_{k=1}^{n} \psi_{k s}\left(x_{1}, \ldots, x_{m}\right) R_{s}
$$

which include terms of the form $x_{i}{ }^{\delta i}, y_{i} x_{i}{ }^{\nu i}, \zeta_{s} x_{i}^{\mu i}\left(\delta_{i}, \mu_{i}, v_{i} \geqslant 2\right)$. It is clear that in the presence of such terms the derivative $d V / d t$ can take on values with either sign when $v>0$. Hence, in choosing the function V in accordance with (2.5) in [1], the following additional conditions on the functions Y_{i}^{*} and Z_{*}^{*} must be imposed:

1) For $y_{1}=\ldots=y_{m}=\zeta_{1}=\ldots=\zeta_{n}=0$, all $Y_{i}{ }^{*} \equiv 0, Z_{s}{ }^{*} \equiv 0$.
2) None of the quantities R_{1} and R_{s}^{\prime} contain terms of lower than the second order in $y_{1} \ldots y_{n}, G_{1} \ldots G_{n}$.
1. Let us investigate system (0.1) assuming that $X_{2}{ }^{*}, Z_{0}{ }^{*}$ vanish for $y_{1}=\ldots-y_{1}-G_{2}=\ldots-G_{1}-0$. This assumption does not restrict the generality of the problem considered in [1]. We transform system (0.1), setting

$$
\begin{equation*}
\zeta_{s}=z_{B}+u_{g}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}\right) \quad(s=1, \ldots, n) \tag{1.1}
\end{equation*}
$$

where $u_{1}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m}\right)$ are the roots of Equations

$$
p_{\mathrm{B} 1} u_{1}+\ldots+p_{\mathrm{s} n} u_{n}+Z_{s}^{*}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; u_{1}, \ldots, u_{n}\right)=0
$$

As a result we have

$$
\begin{equation*}
x_{i}^{\prime}=y_{i}+X_{i}, \quad y_{i}^{\cdot}=Y_{i}, \quad z_{s}^{\prime}=\sum_{k=1}^{n} p_{s k} z_{k}+Z_{s} \quad\binom{i=1, \ldots, m}{s=1, \ldots, n} \tag{1.2}
\end{equation*}
$$

Here X_{1}, Y_{i} are the values of the functions $X_{1}{ }^{*}, Y_{1}{ }^{*}$ for $\sigma_{4}=z_{4}+u_{4}$, and

$$
\begin{equation*}
-Z_{s}^{*}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; u_{1}, \ldots, u_{n}\right)-\sum_{k=1}^{m}\left(y_{k}+X_{k}\right) \frac{\partial u_{s}}{\partial x_{k}}-\sum_{k=1}^{m} \boldsymbol{Y}_{k} \frac{\partial u_{s}}{\partial y_{k}} \tag{1.3}
\end{equation*}
$$

(b) the functions (a) the functions $x_{1}=0$ for $y_{1}=\ldots=y_{1}=x_{1}=\ldots-x_{1}=0$; (b) the functions Y_{1} and z_{5} vanish identically for $y_{1}=\ldots y_{n}=0$, $x_{1} \ldots \ldots-z_{i}=0$ provided all the functions $I_{1}{ }^{*}$ vanish identicailiy for $y_{1}=\ldots=y_{1}-G_{1}=\ldots=G_{n}=0$; (c) the functions Z_{3} do not contain terms with first powers of y_{1}, \ldots, y_{s} for $z_{1}=\ldots=z_{3}=0$ provided all the y_{1}^{*} vanish for $\nu_{1}=\ldots=y_{n}=\zeta_{2}=\ldots=\zeta_{n}=0$ and γ_{1} do not contain terms with first powers of $y_{1}, \ldots, y_{\mathrm{n}}$ for $z_{1}=\ldots=x_{1}=0$.

Let is suppose that $r_{1}=0(\imath=1, \ldots, m)$ for $y_{1}=\ldots=y_{0}=z_{1} \neq \ldots=z_{n}=0$, and, in addition, that for $x_{1}=\ldots=x_{1}=0$ the runctions Y_{1} do not contain linear terms in $y_{1}, \ldots, y_{\mathrm{z}}$. We shail prove that the unperturbed motion is unstable.

We take the Chetaev function in the form

$$
\begin{equation*}
V=\sum_{i=1}^{m} x_{i} y_{i}+\sum_{s=1}^{n} z_{s} \vartheta_{s}\left(x_{1}, \ldots, x_{m}\right)+W\left(z_{1}, \ldots, z_{n}\right) \tag{1.4}
\end{equation*}
$$

Here $w\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$ is a negative definite quadratic form which satisfies Equation

$$
\sum_{s=1}^{n} \frac{\partial W}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)=\sum_{s=1}^{n} z_{s}^{2}
$$

and $\hat{\vartheta}_{s}$ are holomorphic functions of x_{1}, \ldots, x_{2} which vanish for $x_{1} \ldots \ldots=$ $=x_{\mathrm{n}}=0$ and satisry Equations

$$
\begin{gathered}
\sum_{i=1}^{m} x_{i} F_{i k}+\sum_{s=1}^{n} \vartheta_{s}\left(p_{s k}+Q_{s k}\right)=0 \quad(k=1, \ldots, n) \\
F_{i k}=\left.\frac{\partial Y_{i}}{\partial z_{k}}\right|_{z=y=0}, \quad Q_{s k}=\left.\frac{\partial Z_{s}}{\partial z_{k}}\right|_{z=y=0}
\end{gathered}
$$

With the functions ϑ_{s}, chosen in this way and by virtue of the structure of the right-hand sides of the system (1.2), the derivative y^{\prime} can be written as

$$
V^{\prime}=\sum_{i=1}^{m} y_{i}^{2}+\sum_{s=1}^{n} z_{s}^{2}+\sum_{i=1}^{m} \sum_{k=1}^{m} y_{i} y_{k} \varphi_{i k}+\sum_{j=1}^{n} \sum_{\sigma=1}^{n} z_{j} z_{d} \psi_{j \sigma}+\sum_{i=1}^{m} \sum_{j=1}^{n} y_{i} z_{j} f_{i j}
$$

Here the functions $\varphi_{i k}, \psi_{j \sigma}, f_{i j}$ vanish for

$$
x_{1}=\ldots=x_{m}=y_{1}=\ldots=y_{m}=z_{1}=\ldots=z_{n}=0
$$

Let us consider the domain $V>0$. It is clear that in this domain the derivative V^{\prime} is a positive quantity and vanishes only on the boundary of the domain $v>0$, where $y_{1}=\ldots=y_{z}=z_{1}=\ldots=z_{\mathrm{a}}=0$. Hence, the unperturbed motion is unstable [2].

Note. It is easy to show that in the case of motion just analyzed, $x_{1}=c_{1}(t=I, \ldots, m), y_{1}=\ldots=y_{1}=z_{1}=\ldots=z_{n}=0$ are also unstable for sufficiently small values f° the constants c_{1}.
2. Let us consider the casc where $Y_{1} \neq 0$ for $y_{1}=\ldots=y_{n}=z_{1}=\ldots=z_{n}=0$. Let us suppose that the functions V_{1} for $z_{1}=\ldots=z_{n}=0$ do not contain linear terms in y_{1}, \ldots, y_{*}. Ir. system (1.2) let

$$
\begin{align*}
& Y_{i}=\sum_{k=1}^{n} g_{i k} x_{k}{ }^{r_{i k}}+\sum_{k=1}^{m} x_{k}{ }^{r_{i k}} f_{i k}\left(x_{1}, \ldots, x_{m}\right)+\sum_{k=1}^{m} a_{i k} y_{k}{ }^{2}+\sum_{\sigma=1}^{n} z_{\sigma} \varphi_{i \sigma}\left(x_{1}, \ldots, x_{m}\right)+ \tag{2.1}\\
& +\sum_{k=1}^{m} P_{i k}\left(z_{1}, \ldots, z_{n}\right) y_{k}+Q_{i}\left(z_{1}, \ldots, z_{n}\right)+R_{i}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; z_{1}, \ldots, z_{n}\right) \\
& Z_{s}=\sum_{d=1}^{n} z_{d} \omega_{s \sigma}\left(x_{1}, \ldots, x_{m}\right)+R_{s}^{\prime}\left(x_{1}, \ldots, x_{m} ; y_{1}, \ldots, y_{m} ; z_{1}, \ldots, z_{n}\right)\binom{i=1, \ldots, m}{s=1, \ldots, n}
\end{align*}
$$

Here $a_{1 x}, g_{1 k}$ are constants; $f_{i k}, \varphi_{i \infty}, \omega_{s o}$ are holomorphic functions of x_{1}, \ldots, x_{n} which vantsh for $x_{1}=\ldots=x_{n}=0 ; P_{i k}$ are inear and Q_{i} are quadratic forms in $z_{1}, \ldots, z_{n} ; R_{1}$ are holomorphic functions of $x_{1}, \ldots, x_{\mathrm{a}}$; $y_{1}, \ldots, y_{n} ; z_{1}, \ldots, z_{n}$ which do not contain terms of lower than the third dimension in these variables and do not include terms of lower than the second order in $\psi_{1}, \ldots, y_{n} ; z_{1}, \ldots, z_{n} ; R_{s}$ are holomorphic functions of $x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n} ; y_{1}, \ldots, z_{n}$ which vanish for $x_{k}=y_{k}=z_{s}=0$ and do not contain terms with first powers of $\boldsymbol{z}_{1}, \ldots, z_{n}$ for $y_{1}=\ldots=y_{n}$.

We note that if for $z_{1}=\ldots=z_{n}=0$ the functions Y_{1} contain, for example terms in $x_{i}{ }_{i k}$, then for $z_{1}=\ldots=z_{n}=0$ the functions $z_{\text {, can contain similar }}$ terms whose order relative to x_{1} is higher by at least one. This property of the functions Z_{s} follows from Equations (1.3)

We shall show that unperturbed motion is unstable if:
a) the nonlinear functions Y_{i}, Z_{3} satisfy conditions (2.1);
b) In each column of the matrix
the smallest numbers $r_{i^{\prime}}(k=1, \ldots, m)$ are even and the corresponding quantities $g_{i^{\prime} k}$ have same sign.

Let us take a Liapunov function V of the form [1]

$$
\begin{gather*}
V=\sum_{k=1}^{m}\left[1+\left(\sum_{i^{\prime}} g_{i^{\prime} k}-\sum_{i=1}^{m} a_{i k}\right) x_{k}\right] y_{k}+\sum_{k=1}^{m} \sum_{s=1}^{n} z_{s} \psi_{k s}+ \\
+\sum_{i=1}^{m} \sum_{k=1}^{m} U_{i k}\left(z_{1}, \ldots, z_{n}\right) y_{k}+\sum_{k=1}^{m} W_{k} \tag{2.3}
\end{gather*}
$$

Here $\psi_{k s}$ are functions of the variables $x_{1}, \ldots, x_{\text {, }}$ which satisiy Equations

$$
\sum_{s=1}^{n}\left(p_{\mathrm{s} \sigma}+\omega_{\mathrm{s} \sigma}\right) \psi_{k s}+\left[1+\left(\sum_{i^{\prime}} g_{i^{\prime} k}-\sum_{i=1}^{m} a_{i k}\right) x_{k}\right] \varphi_{k \sigma}=0 \quad\binom{\sigma=1, \ldots, n}{k=1, \ldots, m}
$$

The linear and quadratic forms $U_{i k}, W_{k}$ of the variables z_{1}, \ldots, z_{n} can be determined from Equations

$$
\begin{aligned}
& \left.\sum_{s=1}^{n} \frac{\partial U_{i k}}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)+P_{i k}=-\sum_{s=1}^{n} z_{s}\left(\frac{\partial \psi_{i s}}{\partial x_{k}}\right)_{0} \quad \begin{array}{l}
i=1, \ldots, m \\
k=1, \ldots, m
\end{array}\right) \\
& \sum_{s=1}^{n} \frac{\partial W_{k}}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)+Q_{k}=\sum_{i^{\prime}} \sum_{s=1}^{n} g_{i^{\prime} k^{\prime} z_{s}{ }^{2}}
\end{aligned}
$$

Functions V of the form (2.3) satisfy Liapunov's theorem on instability [3]. Hence, the unperturbed motion is unstable.

The unperturbed motion is also unstable if:
a) the nonlinear functions Y_{1}, Z_{0} satisfy conditions (2.1);
b) the diagonal elements $r_{k k}$ of the matrix (2.2) are odd and smaller than the elements of the corresponding column, and if, moreover, the quantities $g_{k k}>0$.

In this case the Liapunov function V can be taken in the form

$$
\begin{equation*}
V=\sum_{k=1}^{m}\left(g_{k k} x_{k}+\sum_{i=1}^{m} U_{i k}\right) y_{k}-\sum_{k=1}^{m} \sum_{s=1}^{n} z_{s} \psi_{k s} \mid W \tag{2.4}
\end{equation*}
$$

Here ψ_{x} are functions of x_{1}, \ldots, x_{3} which satisfy Equations

$$
\sum_{s=1}^{n}\left(p_{s \sigma}+\omega_{s \sigma}\right) \psi_{k s}+g_{k k} x_{k} \varphi_{k \sigma}=0 \quad\binom{\sigma=1, \ldots, n}{k=1, \ldots, m}
$$

The linear and quadratic forms $U_{1 \times} W$ can be determined from Equations

$$
\begin{array}{ll}
\sum_{s=1}^{n} \frac{\partial U_{i k}}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)=-\sum_{s=1}^{n} z_{s}\left(\frac{\partial \psi_{i s}}{\partial x_{k}}\right)_{0} & \binom{i=1, \ldots, m}{k=1, \ldots, m} \\
\sum_{s=1}^{n} \frac{\partial W}{\partial z_{s}}\left(p_{s 1} z_{1}+\cdots+p_{s n} z_{n}\right)=\sum_{s=1}^{n} z_{s}^{2}
\end{array}
$$

Functions V of the form (2.4) satisfy Liapunov's theorem on instability [3]. The unperturbed motion is therefore unstable.

BIBLIOGRAPHY

1. Sagitov, M.S. and Filatov, A.N., Ob ustoichivosti po Liapunovu v kriticheskom sluchae, kogda opredeliaiushchee uravnenie imeet chetnoe chislo nulevykh kornei (On Liapunov stability in the critical case of a characteristic tquation with an even number of roots equal to zero). PMM Vol.29, № 1,1965 .
2. Chetaev, N.G., Ustoichivost' dvizheniia (Stability of Motion), 2nd revised edition, Gostekhizdat, Moscow, 1955.
3. Liapunov, A.M., Obshchaia zadacha ob ustoichivosti dvizhenila (The General Problem of the Stability of Motion). Gostekhizdat, 1950.
